next About this document ...
previous Bibliography
up MDFT   Search


Index


20 dB boost : 15.2.1
3 dB boost : 15.2.1
absolutely integrable : 11.2.1
alias operator : 8.2.11
aliased sinc function : 7.7
aliasing : 8.2.11 | 13.2
aliasing operator : 8.2.11
aliasing theorem
continuous time : 13.2.1
amplitude of a sinusoid : 5.1
amplitude response : 9.3.2
anti-aliasing lowpass filter : 8.2.11
anti-Hermitian : 8.4.2
antilogarithm, antilog : 15.1
antisymmetric functions : 8.3
Argand diagram : 3.6
average power : 6.5 | 16.3
Banach spaces : 6.5.3
bandlimited : 4.8
bandlimited interpolation : 8.4.13
of spectra : 8.2.7
time or frequency domain : 8.2.7
bandlimited signals cannot be time limited : 12.3
base (of a logarithm) : 15.1
bel : 15.2
bin number (DFT) : 7.7
bits (binary digits) : 16.1.2
Blackman window : 9.1.4
carrier wave : 5.3.8.1
Cartesian coordinates : 3.6
causal : 8.2.6
characteristic of a logarithm : 15.1
circular convolution : 8.2.3
circular cross-correlation : 9.4.1
CODEC : 16.2.3
coefficient of projection : 7.6
coherence function : 9.6 | 9.6
coherence function in matlab : 9.6.1
column vector : 17.1
comb filter : 5.1.5
common logarithm : 15.1
commutativity of convolution : 8.2.3.1
companding : 15.2.3 | 16.2.3
complex amplitude : 5.3.8.1
complex conjugate : 3.7
complex matrix : 17
complex matrix transpose : 17
complex multiplication : 3.5
complex numbers : 3 | 3.3 | 3.5 | 3.7
complex numbers in matlab : 18.1
complex plane : 3.6
complex roots of a polynomial : 3.3
complexity of FFT : 10.2.1
conjugation and reversal symmetries (DFT) : 8.4.2
constant modulus : 5.3
continuous-time aliasing : 13.2.1
convolution : 8.2.3 | 8.2.3
filter representation : 9.3
frequency domain : 8.4.6
graphical : 8.2.3.2
convolution commutativity : 8.2.3.1
convolution theorem : 8.4.5
convolution theorem dual : 8.4.6
correlation : 8.2.4
correlation analysis : 9.4
correlation operator : 8.2.4
correlation theorem : 8.4.7
cps : 5.1
cross-correlation, circular : 9.4.1
cross-covariance : 9.4.4
cross-spectral density : 9.4.1
cross-talk : 7.7
cubic spline : 14.5
cycles per second : 5.1
cyclic convolution : 8.2.3
dB for display : 15.2.2.4
dB per decade : 15.2.1
dB per octave : 15.2.1
dB properties : 15.2.1
dB scale : 15.2
dB SPL : 15.2.2.3
dBm scale : 15.2.2.1
dBV scale : 15.2.2.2
de Moivre's theorem : 3.10
decibel : 15.2
decimal numbers : 16.1.2
decimation in frequency : 10.1
decimation in time : 10.1 | 10.1
decimation theorem : 8.4.11
delta function : 11.2.2
DFT
applications : 9
as a digital filter : 7.7
bin amplitude response : 18.4.2
definition : 2.1
math outline : 2.4
normalized : 7.8
DFT matrix : 7.10 | 7.10
DFT matrix in matlab : 18.4.3
DFT sinusoids : 7.2.2 | 18.4.1
differentiability of audio signals : 14.6
differentiation theorem : 12.1
digit : 16.1.2
digital filter : 9.3
discrete time Fourier transform (DTFT) : 11.1
discrete cosine transform (DCT) : 10.3.1
Discrete Fourier Transform (DFT) : 2.1 | 7 | 8.1
downsampling operator : 8.2.10
downsampling theorem (aliasing theorem) : 8.4.11
DTFT : 11.1
duality (Fourier) : 8.4.6
dynamic range : 15.2.3
dynamic range of magnetic tape : 15.2.3
energy : 15.2
energy of a signal : 6.5
energy theorem : 8.4.9 | 8.4.9
essential singularity : 14.5
Euler's Identity : 3.9 | 3.9 | 4 | 15.1.2
even functions : 8.3
exp(j theta) : 4.12
expected value : 16.3
exponent : 15.1
exponents
properties of : 4.3
rational : 4.6
factored form of a polynomial : 3.1
factoring a polynomial : 3.1
fast convolution : 8.4.5
Fast Fourier Transform (FFT) : 10
FFT : 10
FFT notation : 8.1.1
FFT software : 10.4
FFT window : 7.7 | 9.1.4
flip operator : 8.2.1 | 8.2.1
folding frequency : 8.4.13
formants : 9.2.1
Fourier duality : 8.4.6
Fourier series and the DFT : 11.3
Fourier series coefficient : 11.3
Fourier symmetries : 8.4.3
Fourier theorems : 8 | 8.4
Fourier theorems (continuous time) : 12
continuous time aliasing : 13.2.1
differentiation : 12.1
scaling or similarity : 12.2
uncertainty principle : 12.3
Fourier theorems (DFT) : 8 | 8.4
convolution theorem : 8.4.5
convolution theorem dual : 8.4.6
correlation theorem : 8.4.7
downsampling (aliasing) theorem : 8.4.11
energy theorem (Rayleigh) : 8.4.9
Parseval's theorem : 8.4.8
periodic interpolation (in time) : 8.4.13
power theorem : 8.4.8
shift theorem : 8.4.4
stretch (repeat) theorem : 8.4.10
zero-padding (spectral interpolation) theorem : 8.4.12
Fourier transform : 11.2
Fourier transform existence : 11.2.1
Fourier transforms for continuous/discrete time/frequency : 11
frequency bin : 7.7
frequency response : 9.3.1
frequency-domain aliasing : 8.2.11 | 8.2.11
FS (Fourier Series) : 11.3
FT (Fourier Transform) : 11.2
fundamental theorem of algebra : 3.4
Gaussian function : 12.3.1
generalized function : 11.2.2
geometric sequence : 7.1
geometric sequence frequencies : 13.4
geometric series : 7.1 | 7.1
geometric signal theory : 6
Gibb's phenomenon : 7.7
graphical convolution : 8.2.3.2
Hann window : 9.1.5
Hanning window : 9.1.5
Heisenberg uncertainty principle : 12.3.1
Hermitian spectra : 8.4.3
Hermitian symmetry : 8.4.2
Hermitian transpose : 6.6 | 7.10 | 17
Hertz : 5.1
hexadecimal : 16.1.2
Hz : 5.1
ideal lowpass filter : 8.4.13.1
identity matrix : 17.1
IDFT : 2.2 | 8.1
imaginary part : 3.5
impulse response : 9.3
impulse signal : 9.3
impulse train : 11.3.1
impulse, continuous time : 11.2.2
indicator function : 8.4.4.1
inner product : 6.6
instantaneous frequency : 5.1
instantaneous phase : 5.1
integrable function : 11.2.1
intensity : 15.2
intensity level : 15.2.2.3
interpolation operator : 8.2.8 | 8.2.8
inverse DFT : 2.2 | 8.1
inverse DFT matrix : 7.10
irrational number : 4.7
just-noticeable difference (JND) : 15.2
lag : 8.2.4
lagged product : 8.2.4
linear combination : 5.3.8.2 | 6.5.3
linear number systems for digital audio : 16.1
linear phase FFT windows : 8.4.4.2
linear phase signal : 8.4.4.1
linear phase term : 8.4.4 | 8.4.4.1 | 8.4.4.1
linear transformation : 17.1
linear, time-invariant filters and convolution : 9.3
linearity of the DFT : 8.4.1
linearly independent : 6.7.1
logarithm : 15.1
logarithmic number systems for audio : 16.2
logarithms
changing the base : 15.1.1
of imaginary numbers : 15.1.2
loudness : 15.2.2.3
lowpass filter (ideal) : 8.4.13.1
Lp norms : 6.5.1
Maclaurin series : 14.3
magnitude of a sinusoid : 5.1
main lobe : 7.7
mantissa : 15.1
matched filter : 8.2.3.2
Matlab : 18
Matlab/Octave examples : 18
matrix : 17
matrix multiplication : 17.1
matrix transpose : 17
maximally flat : 14.2
mean of a random variable : 16.3
mean of a signal : 6.5 | 16.3
mean square : 16.3
mean value : 16.3
modulo : 8.1.2
modulo indexing : 8.1.2
moments of a function : 16.3
monic polynomial : 3.1
Mth roots of unity : 4.13
mu-law companding : 16.2.3
multiplication in the time domain is convolution in the frequency domain : 8.4.6
multiplication of large numbers : 15.1
multiplying two numbers convolves their digits : 8.2.3.4
natural logarithm : 15.1
non-removable singularity : 14.5
nonlinear system of equations : 3.1
norm properties : 6.5.2
normalized inverse DFT matrix : 7.10
normalized DFT : 7.8 | 8.4.9
normalized DFT matrix : 7.10
normalized DFT sinusoid : 7.5 | 8.4.8
normalized DFT sinusoids : 7.8
normalized frequency : 8.1 | 11.1
Nth roots of unity : 7.2.1
number systems for digital audio : 16
floating point : 16.2.1
fractional fixed point : 16.1.3
how many bits are enough : 16.1.4
logarithmic : 16.2
logarithmic fixed point : 16.2.2
mu law : 16.2.3
one's complement fixed point : 16.1.2.1
PCM : 16.1.1
two's complement fixed point : 16.1.2.2
when byte swapping is needed : 16.1.5
number theoretic transform : 10.3.2
Nyquist limit : 8.4.13
Nyquist rate : 8.4.13
Nyquist sampling theorem : 13
octal : 16.1.2
Octave : 18
odd functions : 8.3
Ohm's law : 15.3
operators : 8.2
alias : 8.2.11
downsampling : 8.2.10
flip : 8.2.1
interpolation : 8.2.8
repeat : 8.2.9
shift : 8.2.2
stretch : 8.2.5
orthogonal projection : 6.6.9
orthogonality : 6.6.7 | 7.10
orthogonality of DFT sinusoids : 7.3
orthogonality of sinusoids : 7.2
orthonormal : 7.10
overlap-add : 8.4.13.2
Padé approximation : 14.2
parabola : 3.2
Parseval's theorem : 8.4.8
PCM : 16.1.1
peak amplitude : 5.1
periodic : 8.1.2 | 11.3
periodic extension : 7.7 | 8.1.2
periodic interpolation : 8.4.13
periodogram method for power spectrum estimation : 9.5
phase : 5.1
phase negation : 8.4.2
phase response : 9.3.3
phasor : 5.3.8.1 | 5.3.8.1
phon amplitude scale : 15.2.2.3
polar coordinates : 3.6
polar form of a complex number : 4.13
polynomial
factoring : 3.1
roots : 3.3
polynomial approximation : 14.2
polynomial multiplication : 8.2.3.3
positive and negative frequencies : 5.3.3
power : 15.2
power spectral density : 9.4.4
power spectral density estimation : 9.5
power spectrum : 9.4.4
power theorem : 8.4.8
pressure : 15.2
prime factor algorithm (PFA) : 10.3.3
primitive root of unity : 4.14 | 7.2.1
probability density function : 16.3
probability distribution : 16.3
projection of signals : 6.6.9
Pythagorean theorem in N-Space : 6.6.8
quadratic formula : 3.2 | 3.2
radian frequency : 5.1
radix 2 FFT : 10.2 | 10.2
random variable : 16.3
rational number : 4.6
Rayleigh's energy theorem : 8.4.9
real part : 3.5
rectangular window : 7.7 | 8.4.13.1
rectilinear coordinates : 3.6
remainder term : 14.1 | 14.3
removable singularity : 14.5
repeat (stretch) theorem : 8.4.10
repeat operator : 8.2.9
rms level : 16.3
root mean square : 6.5
roots of a polynomial : 3.1 | 3.3
roots of unity : 4.14 | 4.14 | 7.2.1
round-off error variance : 16.3
row vector : 17.1
sample circular cross-covariance : 9.4.4
sample coherence function : 9.6
sample mean : 6.5 | 16.3
sample variance : 6.5 | 16.3
sampling rate : 8.4.13
sampling theorem : 13 | 13.3
scaling theorem : 12.2
second central moment : 16.3
second moments of a signal : 12.3.1
sensation level : 15.2.2.3
Shannon sampling theorem : 13
shift operator : 8.2.2 | 8.2.2
shift theorem : 8.4.4
shift theorem and FFT windows : 8.4.4.2
sidelobes : 7.7
sifting property : 11.2.2
signal dynamic range : 15.2.3
signal energy : 6.5
signal metrics : 6.5
signal operators : 8.2
signal projection : 6.6.9
similarity theorem : 12.2
sinc function : 7.7
sinc function, aliased : 7.7
sinusoids and exponentials : 5
sinusoids at the same frequency : 5.1.4
skew-Hermitian : 8.4.2
smoothing, frequency domain : 8.4.6
sone amplitude scale : 15.2.2.3
Sound Pressure Level (SPL) : 15.2.2.3
spectral interpolation : 8.2.7 | 8.4.12
spectral leakage : 7.7
spectrogram : 9.2
spectrogram in matlab : 18.5
spectrum : 7.6 | 8.1
spectrum complex conjugate : 8.4.2
speech spectrogram : 9.2.1
SPL : 15.2.2.3
split radix : 10.2
square integrable : 11.2.1
square matrix : 17
standard deviation : 16.3
Stone-Weierstrass polynomial approximation theorem : 14.4
stretch (repeat) theorem : 8.4.10
stretch operator : 8.2.5
symmetric functions : 8.3
system identification : 9.4.3 | 9.6
Taylor series : 14
remainder bound : 14.2
remainder term : 14.1
Taylor series expansion : 4.8 | 4.8
theorems for the DFT : 8.4
time constant : 5.2
time-bandwidth product : 12.3.3
time-domain aliasing : 8.2.11
time-limited signals : 12.3.2
Toeplitz matrix : 17.1
transcendental number : 4.11
transform pair : 8.1.1
transpose of a complex matrix : 17
transpose of a matrix product : 17.1
twiddle factors : 10.1
unbiased sample cross-correlation : 9.4.1
uncertainty principle : 12.3
unit pulse signal : 9.3
unitary : 7.10
variance : 6.5
variance of a random variable : 16.3
vector addition : 6.3
vector representation of signals : 6.2
vector subtraction : 6.4
Weierstrass polynomial approximation theorem : 14.4
Welch's method : 9.5
window : 7.7
windowing in the time domain equals smoothing in the frequency domain : 8.4.6
zero padding : 8.2.6 | 8.4.12 | 9.1
zero padding example : 9.1.3
zero padding in the time domain equals ideal interpolation in the frequency domain : 8.2.7
zero padding, spectral : 8.4.13
zero phase signal : 8.4.3
zero-padding theorem : 8.4.12
zero-phase signal : 8.4.4.1
zeros of a polynomial : 3.1


next About this document ...
previous Bibliography
up MDFT   Search

``Mathematics of the Discrete Fourier Transform (DFT), with Music and Audio Applications'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2004-09-24 by Julius O. Smith III
W3K Publishing,
World Wide Web of Knowledge